2013 Vol. 15, No. 9 2172–2175

Highly Diastereo- and Enantioselective Organocatalytic Domino Michael/Aldol Reaction of Acyclic 3-Halogeno-1,2-Diones to α , β -Unsaturated Aldehydes

Alice Lefranc,† Laure Guénée,‡ and Alexandre Alexakis*,†

Department of Organic Chemistry, University of Geneva, quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland, and Laboratory of Crystallography, University of Geneva, quai Ernest Ansermet 24, CH-1211 Geneva 4, Switzerland

Alexandre.Alexakis@unige.ch

Received March 16, 2013

ABSTRACT Ar Ar OTMS (20 mol %) Toluene, rt, 30 min X = Cl,F R¹ = aryl, heteroaryl R²R³ = EDG, EWG Ar (20 mol %) Toluene, rt, 30 min 17 examples 69-97% yields single diastereoisomer up to 94% ee

The first organocatalytic diastereo- and enantioselective domino Michael/aldol reaction of 3-halogeno-1,2-diones to α , β -unsaturated aldehydes has been achieved. This transformation tolerates a large variety of electronically different substituents on both reactive partners and allows the synthesis of challenging cyclopentanone derivatives with four contiguous stereogenic centers in excellent diastereoselectivities (>20:1 dr) as well as good yields (69–97%), and enantioselectivities (up to 94% ee).

The formation of C-C bonds with a limited number of steps is one of the most important challenges in organic synthesis.¹ For this purpose, organocatalytic cascade or

† Department of Organic Chemistry.

domino reactions represent a particularly powerful tool for accessing versatile chiral building blocks with functional and molecular diversity in an atom-economical manner.^{2,3}

1,2-Dicarbonyl compounds are very attractive scaffolds due to their diverse number of reactive centers.⁴ They have two nucleophilic and two electrophilic potentially reactive sites.⁵ Thanks to their functional complexity, 1,2-dicarbonyl compounds represent very interesting pronucleophiles for organocatalytic cascade or domino reactions.⁶

Recently, this type of compound has been widely utilized in asymmetric organocatalytic transformations.^{7–9}

[‡] Laboratory of Crystallography.

⁽¹⁾ Selected reviews: (a) Newhouse, T.; Baran, P. S.; Hoffmann, R. W. *Chem. Soc. Rev.* **2009**, *38*, 3010. (b) Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. *Acc. Chem. Res.* **2008**, *41*, 40.

⁽²⁾ Selected recent reviews: (a) Pellissier, H. Adv. Synth. Catal. 2012, 354, 237. (b) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167. (c) Enders, D.; Grondal, C.; Hüttl, M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570. (d) Walji, A. M.; MacMillan, D. W. C. Synlett 2007, 1477.

⁽³⁾ Selected recent examples: (a) Zeng, X.; Ni, Q.; Raabe, G.; Enders, D. *Angew. Chem., Int. Ed.* **2013**, *52*, 2977. (b) Hayashi, Y.; Umemiya, S. *Angew. Chem., Int. Ed.* **2013**, *52*, 3450.

⁽⁴⁾ Selected examples for the application of 1,2-dicarbonyls in organic synthesis: (a) Trost, B. M.; Dong, G.; Vance, J. A. Chem.—Eur. J. 2010, 16, 6265. (b) Shibasaki, M.; Kanai, M. Chem. Rev. 2008, 108, 2853. (c) Svennebring, A.; Nilsson, P.; Larhed, M. J. Org. Chem. 2007, 5851. (d) Nair, V.; Vellalath, S.; Poonoth, M.; Mohan, R.; Suresh, E. Org. Lett. 2006, 8, 507. (e) Schuster, T.; Bauch, M.; Dürner, G.; Göbel, M. Org. Lett. 2000, 2, 179. (f) Trost, B. M.; Schroeder, G. M. J. Am. Soc. Chem. 2000, 122, 3785. (g) Ponaras, A. A. Tetrahedron Lett. 1980, 21, 4803

⁽⁵⁾ Bonne, D.; Constantieux, T.; Coquerel, Y.; Rodriguez, J. *Chem.*—*Eur. J.* **2013**, *19*, 2218.

^{(6) (}a) Raimondi, W.; Bonne, D.; Rodriguez, J. Chem. Commun. **2012**, 48, 6763. (b) Raimondi, W.; Bonne, D.; Rodriguez, J. Angew. Chem., Int. Ed. **2012**, 51, 40.

⁽⁷⁾ For the utilization of 1,2-ketoesters as pronucleophiles in organocatalytic reactions: (a) Torii, H.; Nakadai, M.; Ishihara, K.; Saito, S.; Yamamoto, H. *Angew. Chem., Int. Ed.* **2004**, *43*, 1983. (b) Raimondi, W.; Baslé, O.; Bonne, D.; Constantieux, T.; Rodriguez, J. *Adv. Synth. Catal.* **2012**, *354*, 563. (c) Terada, M.; Amagai, K.; Ando, K.; Kwon, E.; Ube, H. *Chem.—Eur. J.* **2011**, *17*, 9858.

The development of different activation modes, increasing their nucleophilicity instead of competitive useless self-condensation, has become a very attractive challenge.¹⁰

In contrast, 1.2-diones have rarely been described as pronucleophiles in organocatalytic reactions. Only the reactivity of the cyclic commercially available 1.2-cyclohexadione and 2-hydroxy-1,4-naphthoquinone has been explored. This fact is probably due to the difficulty in synthesizing new 1,2-diones. Rueping et al. reported successively the first domino Michael/acetalization C-O heterocyclization sequence of 2-hydroxy-1,4-naphthoguinone¹¹ and the domino Michael/aldol reaction of 1,2-cyclohexadione¹² with α,β -unsaturated aldehydes catalyzed by the Hayashi-Jørgensen catalyst forming respectively chiral 1,4-pyranonaphthoquinones and bicyclo(3,2,1)octane-6carbaldehydes. Furthermore, other Michael acceptors, such as nitroolefins, ¹³ arylidenemanonitriles, ¹⁴ and α , β -unsaturated pyruvates, ¹⁵ have been also reported as a replacement for $\alpha.\beta$ -unsaturated aldehydes catalyzed by a bifunctional Bronsted acid/base catalyst affording similar bicyclic structures.

Herein, we describe the first organocatalytic domino Michael/aldol reaction of acyclic 3-halogeno-1,2-diones with α,β -unsaturated aldehydes to form cyclopentanones with four contiguous stereogenic centers. Activation of position 3 by the halogen atom could increase the nucleophilicity of these 1,2-dicarbonyls at the expense of the electrophilic sites. Higher flexibility and molecular complexity could also be obtained by the use of acyclic 1,2-diones.

We began our investigations by examining the organocatalytic reaction of 3-chloro-1,2-dione **1a** with cinnamaldehyde **2a** in toluene catalyzed by the Hayashi—Jørgensen catalyst **I**. Degradation of the reactive mixture was observed with a catalyst loading of 20 mol % (Table 1, entry 1). But with 10 mol % of the same catalyst **I**, products **3a** and **4a** were formed in a ratio of 6:1 (Table 1, entry 2). Product **4a** corresponds to the dehydrated derivative of **3a**. Remarkably, product **3a** was obtained exclusively as a single diastereoisomer, indicating the perfect stereocontrol of four contiguous stereogenic centers, with a good yield and enantioselectivity. The other diarylprolinol silylether catalyst \mathbf{H}^{16} was also tested in this reaction; only product $3\mathbf{a}$ was observed with a perfect diastereoselectivity (>20:1 dr) as well as excellent yield (91%) and enantioselectivity (91% ee). But when the catalyst loading was decreased to 10 mol %, the reactivity and stereocontrol of the reaction were reduced (Table 1, entries 3 and 4). In the same manner, the use of the Macmillan type catalyst \mathbf{H}^{16} showed a dramatic drop in the diastereoselectivity (Table 1, entry 5).

After this first optimization, we decided to examine the influence of different solvents. The new asymmetric domino Michael/aldol reaction was carried out in various solvents without any improvements in terms of reactivity and selectivity (Table 1, entries 6-11). Experimentation at low temperature showed the formation of products 3a and 4a in a ratio of 5:1 and the diastereoselectivity was reduced (Table 1, entry 12). NMR monitored investigations indicated that the reaction was finished after 30 min, and product 3a was obtained with the same diastereoselectivity ($>20:1\ dr$), a better yield (97%), and a similar enantioselectivity ($88\%\ ee$) (Table 1, entry 13).

Table 1. Optimization of the Reaction Conditions^a

				$yield^c$		ee^d
$\underline{\text{entry}}^a$	cat.	solvent	3 a: 4 a b	(%)	dr^b	(%)
1^e	I	toluene	_	_	_	_
2^f	I	toluene	6:1	70	>20:1	87
3	II	toluene	>20:1	91	>20:1	91
4^f	II	toluene	>20:1	83^g	9:1	89^g
5	III	toluene	>20:1	86^h	5:1	_
6	II	MeOH	>20:1	53	>20:1	84
7	II	$\mathrm{CH_2Cl_2}$	>20:1	80	>20:1	88
8	II	EtOAc	>20:1	74	>20:1	90
9	II	MeCN	3:1	53	>20:1	80
10	II	DMF	>20:1	78	>20:1	87
11	II	CHCl_3	>20:1	77	>20:1	53
12^i	II	toluene	5:1	83^h	4:1	_
13^{j}	II	toluene	>20:1	97	>20:1	88

^a1,2-Dione (0.1 mmol), cinnamaldehyde (0.5 mmol), solvent (0.2 mL). ^b Ratio determined by ¹H NMR of the crude reaction mixture for product 3a. ^c Isolated yield for product 3a. ^d Determined by chiral SFC for product 3a. ^e Degradation of the reactive mixture was observed. ^f 10 mol % of the catalyst was used. ^g Determined for the major diastereoisomer. ^h Determined for the mixture of the two diastereoisomers. ⁱ Reaction was performed at 0 °C. ^j Reaction was performed with 1,2-dione (0.1 mmol), cinnamaldehyde (0.2 mmol) in toluene (0.2 mL) at room temperature for 30 min.

Org. Lett., Vol. 15, No. 9, 2013

⁽⁸⁾ For the utilization of 1,2-ketoamides as pronucleophiles in organocatalytic reactions: Baslé, O.; Raimondi, W.; Sanchez Duque, M. M.; Bonne, D.; Constantieux, T.; Rodriguez, J. *Org. Lett.* **2010**, *12*, 5246.

⁽⁹⁾ For the utilization of 1,2-ketoacids as pronucleophiles in organocatalytic reactions: Vincet, J.-M.; Margottin, C.; Berlande, M.; Cavagnat, D.; Buffeteau, T.; Landais, Y. *Chem. Commun.* **2007**, 4782.

^{(10) (}a) Dambruoso, P.; Massi, A.; Dondoni, A. *Org. Lett.* **2005**, *7*, 4657. (b) Basak, A. K.; Shimada, N.; Bow, W. F.; Vicic, D. A.; Tius, M. A. *J. Am. Chem. Soc.* **2010**, *132*, 8266.

⁽¹¹⁾ Rueping, M.; Sugiono, E.; Merino, E. Angew. Chem., Int. Ed. 2008, 47, 3046.

⁽¹²⁾ Rueping, M.; Kuenkel, A.; Tato, F.; Bats, J. W. Angew. Chem., Int. Ed. 2009, 48, 3699.

^{(13) (}a) Rueping, M.; Kuenkel, A.; Fröhlich, R. *Chem.—Eur. J.* **2010**, *16*, 4173. (b) Ding, D.; Zhao, C.-G.; Guo, Q.; Arman, H. *Tetrahedron* **2010**, *66*, 4423.

⁽¹⁴⁾ Ding, D.; Zhao, C.-G. Tetrahedron Lett. **2010**, *51*, 1322.

^{(15) (}a) Ren, Q.; Gao, Y.; Wang, J. Org. Biomol. Chem. **2011**, *9*, 5297. (b) Gao, Y.; Ren, Q.; Ang, S.-M.; Wang, J. Org. Biomol. Chem. **2011**, *9*, 3691.

⁽¹⁶⁾ Selected general reviews on aminocatalysis: (a) Jensen, K. L.; Dickmeiss, G.; Jiang, H.; Albrecht, L.; Jørgensen, A. *Acc. Chem. Res.* **2011**, *45*, 248. (b) List, B. *Chem. Commun.* **2006**, 819. (c) Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. *Angew. Chem., Int. Ed.* **2008**, *47*, 6138.

Under the optimized reaction conditions, the substrate scope of this diarylprolinol silylether catalyzed enantio-selective domino Michael/aldol reaction using various α,β -unsaturated aldehydes **2** was investigated (Table 2). Aromatic α,β -unsaturated aldehydes **2b**—**h** with electron-donating (Table 2, entries 1–4) and electron-withdrawing (Table 2, entries 5–7) substituents were involved successfully in the reaction. Various new cyclopentanones with four contiguous stereogenic centers were synthesized in good yields (77–94%) and enantioselectivities (82–90% *ee*). The diastereoselectivity was also perfectly controlled in the same manner (> 20:1 *dr*). Additionally, a heteroaromatic α,β -unsaturated aldehyde could be also involved in this transformation (Table 2, entry 8). Finally, less reactive *trans*-2-pentenal was used, and almost no reaction occurred.

Table 2. Organocatalytic Domino Michael/Aldol Reactions of 3-Chloro-1,3-diphenylpropane-1,2-dione (1a) and α,β -Unsaturated Aldehydes Catalyzed by the Catalyst \mathbf{II}^a

entry^a	R^1	3	$\begin{array}{c} {\rm yield}^b \\ (\%) \end{array}$	dr^c	ee^d $(\%)$
1	$m ext{-MeOC}_6 ext{H}_4\left(\mathbf{2b}\right)$	3b	83	>20:1	90
2	$p ext{-MeOC}_6 ext{H}_4\left(\mathbf{2c}\right)$	3c	77	>20:1	86
3	$p ext{-} ext{MeC}_6 ext{H}_4\left(\mathbf{2d}\right)$	3d	90	>20:1	86
4	$o ext{-MeOC}_6 ext{H}_4\left(\mathbf{2e}\right)$	3e	83	>20:1	82
5	$p ext{-} ext{FC}_6 ext{H}_4\left(\mathbf{2f}\right)$	3f	94	>20:1	90
6	$m ext{-} ext{BrC}_6 ext{H}_4\left(\mathbf{2g} ight)$	3g	92	>20:1	88
7	$o ext{-} ext{BrC}_6 ext{H}_4\left(\mathbf{2h} ight)$	3h	85	>20:1	83
8	2-furanyl ($2i$)	3i	81	>20:1	82

^a Reaction was performed with 1,2-dione (0.2 mmol) and α , β -unsaturated aldehyde (0.4 mmol) in toluene (0.2 mL). ^b Isolated yield. ^c Determined by ¹H NMR of the crude reaction mixture. ^d Determined by chiral SFC.

After the first application of this new methodology, we decided to apply the same optimized conditions to various 3-chloro-1,2-diones 1b-k with electron-withdrawing and -donating substituents on the aryl moiety in position 1. Products were obtained with excellent diastereoselectivities (>20.1 dr), good yields (80-95%), and enantioselectivities (88-94% ee) (Table 3, entries 1-4). Other 3-chloro-1,3diphenylpropane-1,2-diones with electron-donating and withdrawing substituents on the arvl moiety in position 3 were also employed successfully in the new transformation. A diverse set of new cyclopentanones with four contiguous stereogenic centers was isolated in good yields (69–95%) and enantioselectivities (77–91% ee). Only one diastereoisomer was still observed (> 20:1 dr) (Table 3, entries 5–8). It is interesting to note that whatever the electronic properties of the substituent in the *ortho* position, no reactivity was observed (Table 3, entries 9 and 10). This lack of reactivity is probably due to the steric hindrance of the substituents.

Table 3. Organocatalytic Domino Michael/Aldol Reactions of 3-Chloro-1,3-diphenylpropane-1,2-diones and Cinnamaldehyde (**2a**) Catalyzed by the Catalyst \mathbf{II}^a

entry^a	$\mathbb{R}^2, \mathbb{R}^3$	1	3	yield $(\%)^b$	dr^c	ee (%) ^d
1	$R^2 = o$ -Cl-, $R^3 = H$	1b	3j	80	>20:1	94
2	$R^2 = p$ -Br-, $R^3 = H$	1 c	3k	85	>20:1	89
3	$R^2 = p$ -MeO-, $R^3 = H$	1d	31	95	>20:1	90
4	$R^2 = m$ -Me-, $R^3 = H$	1e	3m	95	>20:1	88
5	$R^2 = R^3 = $ p -Cl-	1f	3n	75	>20:1	91
6	$R^2 = H,$ $R^3 = m$ -MeO-	1g	3o	95	>20:1	90
7	$R^2 = H,$ $R^3 = p\text{-Me}$	1h	3 p	80	>20:1	90
8	$R^2 = H,$ $R^3 = p\text{-NO}_2\text{-}$	1i	3q	69	>20:1	77
9^e	$R^2 = H,$ $R^3 = o\text{-Br}$	1j	3r	_	_	_
10^e	$R^2 = H,$ $R^3 = o\text{-Me}$	1k	3s	_	_	_

^aReaction was performed with 1,2-dione (0.2 mmol) and α , β -unsaturated aldehyde (0.4 mmol) in toluene (0.2 mL). ^b Isolated yield. ^c Determined by ¹H NMR of the crude reaction mixture. ^d Determined by chiral SFC. ^eNo conversion was observed. Starting materials were recovered.

The absolue configuration of product **3k** was determined by X-ray crystallographic analysis (Figure 1; see the Supporting Information). The stereochemistry of these new cyclopentanones with four contiguous stereogenic centers was then established.

$$\equiv \bigcirc_{OH}^{OH}$$

Figure 1. X-ray structure of product **3k**. Thermal ellipsoids are shown at the 50% probability level.

In order to study other modes of activation of 1,2-diones, we decided to test 3-fluoro-1,3-diphenylpropane-1,2-dione 5 in the reaction (Scheme 1).

2174 Org. Lett., Vol. 15, No. 9, 2013

Scheme 1. Reaction of 3-Fluoro-1,3-diphenylpropane-1,2-dione (**5**) and Cinnamaldehyde (**2a**)

Scheme 2. Proposed Catalytic Cycle for the Organocatalytic Domino Michael/Aldol Reaction

Unlike chloro derivatives, 3-fluoro-1,3-diphenylpropane-1,2-dione 5 did not react with cinnamaldehyde 2a in the presence of catalyst II. But with catalyst I, a new cyclopentenone with two contiguous stereogenic centers, 6, was

synthesized after 30 min in an excellent diastereoselectivity (>20:1 dr) as well as good yield (68%) and enantioselectivity (90% *ee*). The formation of the corresponding hydrated compound was not observed (Scheme 1).

In the present transformation, we assume that diaryl prolinol silylether catalyst \mathbf{H} forms the reactive imminium intermediate \mathbf{A} with the α,β -unsaturated aldehyde $\mathbf{2}$. Then, a 1,4-addition occurs with the enol form of the acyclic 1,2-diketone $\mathbf{1}$, forming the Michael adduct \mathbf{B} . This enamine intermediate \mathbf{B} achieves the intramolecular aldol reaction. After hydrolysis, product $\mathbf{3}$ is obtained and the catalyst \mathbf{H} is regenerated (Scheme 2).

In conclusion, we described a new highly diastereo- and enantioselective organocatalyzed domino Michael/aldol reaction in which the formation of four contiguous stereogenic centers was controlled. Several acyclic 3-chloro-1,2-diones and α,β -unsaturated aldehydes could be used providing an access to challenging chiral cyclopentanones in excellent diastereoselectivities as well as good yields and enantioselectivities. In addition, the reactivity of 3-fluoro-1,2-dione was also evaluated in the transformation. New chiral cyclopentenone was obtained with the same excellent diastereoselectivity, in a good yield and enantioselectivity. The expansion of the scope and synthetic applications of this reaction constitute our future investigations.

Acknowledgment. This research was supported by the Swiss National Research Foundation (Grant No. 200020_144344) and COST action CM905 "Organocatalysis" (SER Contract No. C11.0080).

Supporting Information Available. Experimental procedures, NMR spectra, and chiral separations for all compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.

Org. Lett., Vol. 15, No. 9, 2013